Sujet bac 2010 - Série D

CHIMIE RADORES

Exercice 1

On rappelle que les niveaux d'énergie quantifiés de l'atome d'hydrogène sont donnés par la relation :

$$E_n = -\frac{E_0}{n^2}$$
 avec $E_0 = 13,6 \,\mathrm{eV}$ et n étant un entier positif

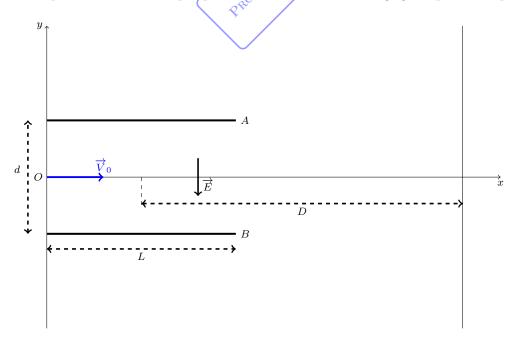
- a. Déterminer, en joules, l'énergie qu'il faut fournir à un atome d'hydrogène pour permettre son passage de l'état fondamental au premier état excité.
 - **b.** Que se passe-t-il si l'atome d'hydrogène dans son état fondamental, reçoit :
 - un photon d'énergie $W = 1,83.10^{-18} \text{ J}?$
 - un électron d'énergie cinétique $E_c = 1,83.10^{-18} \text{ J}$?
- 2 Définir et calculer l'énergie d'ionisation de l'atome d'hydrogène.
- 3 On considère la série de Lyman.
 - a. Qu'appelle-t-on série de raies?
 - b. L'analyse spectroscopique permet de déceler la radiation de fréquence $\nu=3,8.10^{15}$ Hz. À quelle transition correspond-elle?

On donne : $h = 6,62.10^{-34} \text{ J.s}$; $c = 3.10^8 \,\text{m} \cdot \text{s}^{-1}$; $1 \,\text{eV} = 1,6.10^{-19} \,\text{J.}$

Exercice 2

On dose une eau de javel à usage domestique. Pour cela, on fait réagir 20 mL de cette eau de javel diluée contenant des ions hypochlorite (ClO^-) dans un excès d'ions iodures I $^-$. On acidifie le milieu.

- 1 Sachant que les couples redox en présence sont : ClO / Cl et I_2 / I^- , écrire l'équation bilan de la réaction redox.
- 2 On dose les molécules de diiode I_2 formées par une solution de thiosulfate $(S_2O_3^{2-})$ de concentration molaire $0,100 \text{ mol} \cdot \text{L}^{-1}$. L'équivalence est atteinte pour 15,2 mL de solution de thiosulfate versés.
- a. Écrire l'équation bilan de la réaction de dosage. On donne le couple redox $(S_4O_6^{2-}/S_2O_3^{2-})$.
- **b.** Calculer la concentration molaire de l'eau de javel en ions ClO⁻.


 $\mathbf{N.B}$: les molécules de diiode (I_2) sont à l'état liquide à la température de l'expérience.

PHYSIQUE 12 points

Exercice 1

E BERLING HER Un photon animé d'une vitesse \overrightarrow{V}_0 entre dans un champ électrostatique uniforme \overrightarrow{E} crée entre deux plaques A et B, par un point O situé à égale distance des plaques.

La différence de potentiel entre les plaques est $U=400~\mathrm{V}$. On néglige le poids du proton.

- 1 Sur un schéma clair.
 - a. Indiquer les signes des plaques. Justifier.
 - b. Représenter la force électrostatique \overrightarrow{F} qui s'exerce sur le proton dans le champ électrostatique.
- a. Établir les équations horaires du mouvement du proton dans le repère (O, x, y).
 - **b.** En déduire l'équation de la trajectoire du proton à l'intérieur des plaques.
- 3 Le proton sort du champ par le point S d'ordonnée $y_S = -0.96$ mm.
 - **a.** Déterminer V_0 .
 - **b.** Quelle est la nature du mouvement à l'extérieur des plaques?
- 4 On place un écran vertical à une distance D = 30 cm du milieu des plaques. Déterminer les coordonnées du point d'impact M du proton sur l'écran.

On donne: d = 20 cm; L = 10 cm; masse du proton: $m_p = 1,67.10^{-27} \text{ kg}$; charge du proton : $q_p = +e$; $e = 4, 6.10^{-19} \text{ C}.$

Exercice 2

Un pendule simple est constitué d'un fil inextensible de masse négligeable et de longueur l et d'un solide ponctuel de masse m=100 g. L'extrémité libre du fil est fixée à un point O d'un support.

Le pendule effectue des oscillations de faible amplitude, de période T=2 s autour de l'axe horizontal (Δ) passant par le point O.

1 Calculer:

- a. La longueur du fil.
- **b.** L'incertitude absolue sur la mesure de la longueur sachant que $g = 9,80 \pm 0,01 \,\text{m/s}^2$ et que la période a été mesurée à $0,02 \,\text{s}$ près.
- 2 On écarte le pendule de sa position d'équilibre d'un angle de 60° et on l'abandonne sans vitesse initiale.

Déterminer :

- a. En appliquant le théorème de l'énergie cinétique, la vitesse linéaire du solide à son passage par la position $\theta=45^{\circ}$.
- **b.** La tension du fil à cette position.
- 3 Calculer l'énergie cinétique du solide lorsqu'il passe par la position verticale.

N.B: pour les questions 2 et 3, on prendra $g = 9.8 \,\mathrm{m \cdot s^{-2}}$.

