Série C Sujet bac 2010

Exercice

- rcice 1 4 points

 a. Montrer que les équations $x^2 \equiv -1$ [25] et x^2 -1 + 25k où $k \in \mathbb{Z}$ sont équivalentes.
 - **b.** Pour k = 2, résoudre dans \mathbb{Z} l'équation $x^2 \not\equiv -1$ [25].
- a. Trouver suivant les valeurs de l'entier naturel n, les restes de la division euclidienne de $2^n - 4$ par 5.
 - **b.** En déduire le reste de la division euclidienne de $2^{2010} 4$ par 5. Que peut-on alors dire de la divisibilité de $2^{2010} - 4$ par 5?

Exercice 2

5 points

Dans le plan orienté (\mathscr{P}), on considère un carré ABCD de sens direct, de centre O. I et J sont des milieux respectifs des segments [CD] et [AD].

- **1** Construire l'ensemble (Γ) des points M du plan tels que $(\overrightarrow{MA}, \overrightarrow{MC}) = \frac{\pi}{3} [2\pi]$.
- **2** On note (\mathcal{D}) la droite passant par A telle que $\overline{((AC),(\mathcal{D}))} = \frac{\pi}{3} [\pi]$. (\mathcal{D}) coupe (Γ) en E.
 - a. Montrer que le triangle EAC est équilatéral.
 - **b.** En déduire qu'il existe une rotation r de centre E qui transforme A en C.
- 3 On désigne par H le centre de gravité du triangle EAC. La parallèle à la droite (AC)passant par H coupe (EA) et (EC) respectivement en G et F.

 - a. Montrer que $\frac{EG}{EA} = \frac{EF}{EC} = \frac{2}{3}$. b. Montrer qu'il existe une homothétie de centre E qui transforme A en G et C en F.
 - c. En déduire qu'il existe une similitude plane directe S de centre E qui transforme A en F.

Problème

11 points

Partie A

- **1** Résoudre dans \mathbb{R} l'équation différentielle $y'' + \pi^2 y = \emptyset$.
- Déterminer la solution particulière g vérifiant g(0) = 0 et $g'(0) = 2\pi$.

 Partie B DE MATHEMAN

Partie B

On considère la fonction numérique f à variable réelle x définie par :

$$f(x) = \begin{cases} 2\sin \pi x & \text{si} \\ x^2 \left(\frac{1}{2} - \ln x\right) & \text{si} \quad x > 0 \end{cases}$$

 (\mathscr{C}) désigne la courbe représentative de f dans un repère orthonormé $(O,\overrightarrow{i},\overrightarrow{j})$ d'unité graphique 2 cm.

- a. Déterminer l'ensemble de définition E_f de $f_{\rm RM}$
 - **b.** Étudier la continuité et la dérivabilité de f en x=0,
 - c. Montrer que l'étude de f peut être réduite sur l'intervalle $I = [-2; +\infty[$.
- a. Étudier les variations de f sur I. On dressera un tableau résumant les variations de 4
 - b. Étudier la branche infinie de (%) et tracer (%) sur son ensemble de définition.
- **5** Calculer l'aire A_0 du domaine plan (\mathcal{D}) limité par la courbe (\mathcal{C}) , l'axe (Ox) des abscisses et les droites d'équations $x = 1, x = \sqrt{e}$.

Partie C

- 6 Soit S la similitude plane directe de centre O, de rapport $\frac{\sqrt{2}}{2}$ et d'angle $-\frac{\pi}{2}$. Pour x > 0, construire l'image (\mathscr{C}') de (\mathscr{C}) par S.
- 7 On définit la suite $(\mathcal{D}_n)_{n\in\mathbb{N}}$ par :

$$\begin{cases} \mathcal{D}_0 = \mathcal{D} \\ \mathcal{D}_{n+1} = S(\mathcal{D}_n) \end{cases}$$

- **a.** Exprimer l'aire A_n du domaine (\mathcal{D}_n) en fonction de n et A_0 .
- **b.** Exprimer la somme $S_n = A_0 + A_1 + A_2 + ... + A_n$ en fonction de n et A_0 .
- **c.** Calculer la limite de S_n quand n tend vers $+\infty$.

