Série C Sujet bac 2009 JE MATHEMATICA

Exercice

5 points

On considère la famille (S) des suites (V_n) de premiers termes V_0 et V_1 définie par :

$$\forall n \in \mathbb{N}, \quad V_{n+2} + V_{n+1} - 6V_n = 0$$

- a. Déterminer les suites géométriques (a_n) et (b_n) de (S) de premier terme 1.
 - **b.** Démontrer que la suite (U_n) définie par $U_n = \alpha 2^n + \beta (-3)^n$ où α et β sont des réels, est dans (S).
- 2 a. Déterminer les entiers relatifs α et β solutions de l'équation : $8\alpha - 27\beta = -11$.
 - **b.** Déterminer l'entier relatif k pour que le couple $(\alpha; \beta)$ défini par $\alpha = 110 + 27k$ et $\beta = 33 + 8k$ soit solution de l'équation : $4\alpha + 9\beta = 17$.
 - c. En déduire les valeurs des entiers relatifs α et β pour lesquelles $U_2 = 17$ et $U_3 = -11$.
 - **d.** Démontrer que $\forall n \in \mathbb{N}, U_n \equiv 3.2^n [5].$
 - e. Déduire le reste de la division euclidienne du terme U_n par 5.
- 3 Soit $W_n = 2^{n+1} + (-3)^n$ et $S_n = W_0 + \dots + W_n$.
 - a. Démontrer que $S_n \equiv 2 4(2)^n [5]$
 - **b.** Déduire le reste de la division euclidienne de la somme de S_{1956} par 5.

Exercice

4 points

Le plan rapporté à un repère orthonormé de sens direct (O, \vec{i}, \vec{j}) .

1 Résoudre dans l'ensemble \mathbb{C} des nombres complexes, l'équation :

$$z^{2} + (\sqrt{3} + i)z + 1 = 0 \qquad (E)$$

2 Écrire les solutions z' et z'' de (E) sous leur forme trigonométrique.

Problème

11 points

Dans le plan (\mathcal{P}) orienté, on considère les points A, O, B, dans le sens tels que AB = 6 et $\overrightarrow{AO} = \overrightarrow{OB}$.

Partie A

- **1.** Construire les points I et J tels que $2\overrightarrow{IB}$ $\overrightarrow{IA} = \overrightarrow{0}$ et $2\overrightarrow{JB} + \overrightarrow{JA} = \overrightarrow{0}$.
 - **2.** Construire le cercle (\mathscr{C}_1) de diamètre [IJ].
- 1. Construire la droite (\mathcal{T}) passant par A telle que $((\mathcal{T}), (AB)) = 60^{\circ}$. II
 - **2.** Construire le cercle (\mathscr{C}_2) passant par A et B dont la tangente en A est (\mathscr{T}) .

- 3. Démontrer que les cercles (\mathscr{C}_1) et (\mathscr{C}_2) ont deux points communs Ω_1 et Ω_2 situés de part et d'autre de la droite (AB). On notera Ω_1 celui situé dans le plan de frontière (AB) contenant le centre E du cercle (\mathscr{C}_2)
- 11. Démontrer que le centre de la similitude S d'angle de mesure 60°, de rapport $\frac{1}{2}$ et qui transforme A en B est le point Ω_1 .
 - 2. Démontrer que les points A, E et Ω_1 sont alignés,

Partie B

- 1. Soit F le symétrique de E par rapport à la droite (AB).
 - a. Démontrer que J est le centre de gravité du triangle EFB.
 - **b.** Démontrer que EJ = BK et $(\overrightarrow{EJ}, \overrightarrow{BK}) = 60^{\circ}$, K désignant le centre du cercle (\mathscr{C}_1) .
 - c. En déduire qu'il existe une rotation R qui transforme E en B et J en K.
 - 2. Démontrer que les médiatrices des segments [EB] et [JK] se rencontrent en Ω_1 . En déduire le centre de R.
- III Soit $g = T_{\overrightarrow{BA}} \circ R$, où R est la rotation de I.c) et $T_{\overrightarrow{BA}}$ la translation du vecteur \overrightarrow{BA} .
 - 1. Démontrer que les points Ω_1 , J et F sont alignés.
 - **2.** Démontrer que le centre de rotation de g est F.

Partie C

Soit (\mathcal{H}) une hyperbole de centre J, dont un des foyers est I et passant par A.

- **1** Construire le point M de (\mathcal{H}) situé sur le segment $[I\Omega_1]$ ainsi que ses deux sommets.
- Démontrer que les droites (JE) et $(F\Omega_1)$ sont les asymptotes de (\mathcal{H}) . Tracer la branche de (\mathcal{H}) située dans le plan de frontière la droite $(B\Omega_1)$ contenant K.
- 3 On désigne par (\mathcal{H}') l'image de (\mathcal{H}) par S.
 - **a.** Démontrer que l'excentricité e de (\mathcal{H}') est 2.
 - **b.** Déterminer les sommets et les asymptotes de (\mathcal{H}') .

