Sujet bac 2008 - Série C

E BERLIT

Exercice 1

5 points

Dans un plan orienté, on considère le cercle (\mathscr{C}) de centre O; A et B deux points de (\mathscr{C}) tels que $(\overrightarrow{OB}, \overrightarrow{OA}) = \pi$; E le point de (\mathscr{C}) tel que $(\overrightarrow{AB}, \overrightarrow{AE}) = 35^\circ$. La demi-droite [OG) où G est le milieu de [AE] coupe le cercle en un point C. Les droites (AE) et (BC) se coupent en D.

- 1 Démontrer que les points D, E, F, C sont cocycliques, avec $F = (AC) \cap (BE)$.
- **a.** Démontrer que le triangle ABF est un triangle isocèle en B.
 - **b.** En déduire qu'il existe une rotation R de centre B qui transforme F en A.
- **3** a. Démontrer que $S_{BF} \circ S_{OC}$ est une translation T.
 - **b.** Démontrer que son vecteur est \overrightarrow{AE} .
- **a.** Déterminer le centre Ω et l'angle θ de la rotation $g = R \circ T$.
 - **b.** Déterminer g(C) en utilisant la composée $R \circ T$.
 - c. Démontrer que la droite (FD) est une hauteur du triangle ABF.

Exercice 2 4 points

On considère la suite définie par $V_0 = 1$ et $\forall n \in \mathbb{N}, V_{n+1} - 4V_n + 6 = 0$.

- **1** a. Démontrer que $\forall n \in \mathbb{N}^*, \ V_n \equiv V_{n+1}$ [6].
 - **b.** En déduire que (V_n) est périodique dans la division euclidienne par 6.
- **2** a. Déterminer les restes de la division euclidienne de 4^n par 6 suivant les valeurs de n.
 - **b.** Démontrer que $\forall n \in \mathbb{N}, \ V_n \equiv 4^n [6].$
 - **c.** En déduire le reste de la division euclidienne du terme V_{1956} par 6.
- 3 Soit $S_n = V_0 + ... + V_n$.
 - a. Déterminer le reste de la division euclidienne de S_n par 6 suivant les valeurs de n.
 - **b.** En déduire le reste dans la division euclidienne de la somme S_{1956} par 6.

Problème

12 points

Le plan (\mathscr{P}) est rapporté à un repère orthonormé $(O,\overrightarrow{i},\overrightarrow{j}).$

- Le plan (\mathscr{P}) est rapporté à un repère orthonormé $(O,\ i',\ j')$.

 A Soit S la similitude plane directe de centre A(-2,2) qui transforme la droite (\mathscr{D}) d'équation y = x en la droite (O, \overrightarrow{i}) qui est l'axe des abscisses.
 - 1. Déterminer l'angle θ et le rapport k de S.
 - 2. Démontrer que l'expression complexe de S est : $z' = \left(\frac{1}{2} \frac{1}{2}i\right)z 2$ où z' est l'affixe du point M' image du point M d'affixe z par S.

Soit
$$f$$
 fonction définie par :
$$\begin{cases} f(x) = \frac{\mid x^2 - 3x \mid}{x+1} & \text{si } x > -1 \\ f(-1) = -1 \\ f(x) = x - (x+1) \ln \mid x+1 \mid \text{si } x < -1 \end{cases}$$

On note (\mathscr{C}) la courbe représentative de f dans le repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ d'unité graphique 1 cm.

- 1. Démontrer que l'ensemble de définition E_f de f est \mathbb{R} .
- **2.** Étudier la continuité et la dérivabilité de f en $x_0 = -1$, $x_1 = 0$ et $x_2 = 3$.
- **3.** Dresser le tableau de variation de f
- **4.** Démontrer que pour x < -1, l'équation f(x) = 0 admet une solution unique α avec $-4, 6 < \alpha < -4, 5$. Construire (\mathscr{C}) dans le repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.
- **5.** On désigne par (\mathcal{H}) la partie de (\mathcal{C}) dont les abscisses appartiennent à $I =]\alpha; -1[\cup[0;3].$
 - a) Construire (\mathcal{H}') le symétrique de (\mathcal{H}) par rapport à l'axe des abscisses.
 - b) Soit (\mathcal{E}_0) le domaine limité par (\mathcal{H}) , (\mathcal{H}') et les droites d'équations $x = \alpha$, x=-1, x=0 et x=3. On prendra $\alpha \approx -4,55$. Calculer l'aire A_0 de (\mathscr{E}_0) en centimètre carré.
- **6.** On pose $S^n = \underbrace{S \circ S \circ \cdots \circ S}_{n \text{ fois}} \text{ et } (\mathscr{E}_n) = S^n((\mathscr{E}_0)).$
 - **a.** Calculer l'aire A_n de (\mathcal{E}_n) en fonction de A_0 et de n.
 - **b.** Calculer $A_0 + A_1 + \cdots + A_n$ en fonction de n
 - **c.** Calculer la limite de cette somme en $+\infty$.