Sujet bac 2007 - Série C

A DE MARKETANTO

Exercice 1

4 points

Le plan est rapporté à un repère orthonormé $(0, \overline{i}, \overline{j})$ d'unité graphique 2 cm. On considère la fonction vectorielle f de fonctions coordonnées f_1 et f_2 définies par :

$$\begin{cases} f_1(t) = \cos t \\ f_2(t) = \sin 2t + 2\sin t \end{cases}$$
 où t est un nombre réel.

- 1 Étudier les variations de f_1 et de f_2 .
- **2** Démontrer que la fonction f peut être étudiée sur l'intervalle $I = [0; \pi]$.
- 3 Dresser le tableau récapitulatif des variations de f sur I.
- 4 Construire la courbe (\mathscr{C}) représentative de f dans le repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

Exercice 2 4 points

Le plan est rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ d'unité graphique 1 cm.

- 1 Construire le cercle (\mathscr{C}) de centre A(0; -8) tangent en O à l'axe (O, \overrightarrow{i}) .
- Construire le point M image de O par la rotation de centre A d'angle $-\frac{\pi}{3}$.
- 3 Construire la tangente (\mathcal{T}) à (\mathcal{C}) en M.
- 4 Construire le projeté orthogonal H de M sur l'axe (O, \overrightarrow{i}) .
- On désigne par N l'intersection des droites (\mathscr{T}) et (O, \overrightarrow{i}) . Démontrer que les points O, N, M et A appartiennent à un cercle (\mathscr{C}_1) à construire.
- 6 Soit S_1 la similitude plane directe de centre O qui transforme (\mathscr{C}) en (\mathscr{C}_1) . Déterminer son rapport k_1 et son angle θ_1 .
- 7 Soit S_2 la similitude plane directe de centre N qui transforme M en H.
 - **a.** Déterminer son rapport k_2 et son angle θ_2 .
 - **b.** Construire les images des points A et O par $S_2 \circ S_1$.
 - c. En déduire la construction du centre Ω de $S_2 \circ S_1$.

Problème

12 points

- A Soit p le polynôme défini par : $p(x) = x^2 ax + 1$.

 - **2.** p(x) admette une racine double que l'on déterminera.
- B Soit g_a la fonction définie, continue et dérivable sur $[0; +\infty[$ par :

$$g_a(x) = a \ln(x) + \frac{1}{x} - x$$
 où $a \in [-2; 2].$

On note (\mathscr{C}_a) la courbe représentative de g_a dans le plan muni d'un repère orthonormé (O, i, j) d'unité graphique 2 cm.

- **1.** Démontrer que $\forall x \in [0; +\infty)$, $g'_a(x) \leq 0$.
- **2.** Dresser le tableau de variation de g_a pour $a \in]-2$; 2[, a=2 et a=-2.
- **3.** Étudier suivant les valeurs de a, le signe de g_a sur I = [0, 1].
- C Dans la suite du problème, on prendra a=2.
 - 1. Dresser le tableau de variation de la fonction r définie, continue et dérivable sur $]0; +\infty[$ par

$$r(x) = 2\ln x - x$$

puis démontrer que la courbe (\mathcal{H}) de r est une asymptote à la courbe (\mathscr{C}_2) .

- 2. Construire les courbes (\mathscr{C}_2) et (\mathscr{H}) dans le même repère.
- **D** On considère la fonction f définie sur l'intervalle I = [0, 1] par

$$f(x) = \int_0^x \frac{t \ln t}{t^2 - 1} dt$$

1. Déduire du signe de g_2 sur I que $\forall x \in I$,

$$0 < \frac{x \ln x}{x^2 - 1} < \frac{1}{2} \quad ; \quad 0 < f'(x) < \frac{1}{2} \quad \text{et} \quad 0 < f(x) < \frac{1}{2}$$

2. Soit h la fonction définie sur I de manière suivante :

$$\forall x \in I, \ h'(x) = f'(x) \quad \text{et} \quad 0 < h(x) < \frac{1}{2}$$

Démontrer que l'équation h(x) = x admet une solution unique x_0 appartenant à I.

3. Soit (u_n) la suite numérique définie par

$$u_0 = \frac{1}{3}$$
 et $\forall n \in \mathbb{N}, u_{n+1} = h(u_n)$

- a. Démontrer que $\forall n \in \mathbb{N}, 0 < u_n < \frac{1}{2}$ puis, $|u_{n+1} x_0| \le \frac{1}{2} |u_n x_0|$.
- **b.** Démontrer que $\forall n \in \mathbb{N}, \mid u_n x_0 \mid \leq \left(\frac{1}{2}\right)^n \mid u_0 x_0 \mid$.
- c. En déduire que (u_n) est convergente et calculer sa limite.
- d. Déterminer le plus petit entier n_0 pour que u_{n_0} soit une valeur approchée à 10^{-2} près de x_0 .