MATHABRAZZA

Rallye mathématique du Centre et du Congo Éléments de correction de l'épreuve officielle 2025

Exercice n°1

Vous trouverez τ ou tard!

10 points

1. Voir tableau ci-dessous:

Nombre de diviseurs de n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Nombre(s) n	1	2	4	6	16	12	64	24	36	48		60			
Trombie(b) W	_	3	9	8	81	18	01	30	100	80		72			
		5	$\begin{vmatrix} 0 \\ 25 \end{vmatrix}$	10	01	20		40	100	00		84			
		7	49	14		28		42				90			
		11	10	15		32		54				96			
		13		21		44		56							
		17		22		45		66							
		19		26		50		70							
		23		27		52		78							
		29		33		63		88							
		31		34		68									
		37		35		75									
		41		38		76									
		43		39		92									
		47		46		98									
		53		51		99									
		59		55											
		61		57											
		67		58											
		71		62											
		73		65											
		79		69											
		83		74											
		89		77											
		97		82											
				85											
				86											
				87											
				91											
				93											
				94											
				95											

- 2. Ce sont des nombres premiers car ils ont exactement deux diviseurs : 1 et eux mêmes.
- 3. Il y a 16 nombres τ inférieurs ou égaux à 100 : 1, 2, 8, 9, 12, 18, 24, 36, 40, 56, 60, 72, 80, 84, 88, 96.
- 4. Les diviseurs de 2025 sont 1, 3, 5, 9, 15, 25, 27, 45, 75, 81, 135, 225, 405, 675, et 2025. 2025 a donc 15 diviseurs or 15 est un diviseur de 2025 donc 2025 est un nombre τ .

Exercice n°2

Le codage ADFGVX

9 points

- 1. Le message une fois codé est FV FG DV VA AX DX AX DG VA AA AD FD DD FA DD
- 2. Le message suivant : VX AX DA XV FV VA FV FF DV AF VA FF XD FA XF AX AV GV FF DF une fois déchiffré est : BONNE CHANCE A VOUS TOUS
- 3. On a la même grille mais, avec un mot-clé inconnu de 3 lettres, il n'y a que 6 combinaisons possibles pour ranger les colonnes lors de la création de la grille 2.
 - Une seule donne une phrase qui a un sens qui est : LE RALLYE CEST TOP

Exercice n°3

En somme, c'est un produit!

9 points

Soit A le nombre choisi, l'idée est de décomposer le nombre A, le plus possible, en tranches de taille 3 donc écrire A comme somme de 3. Si A n'est pas divisible par 3, on ne peut pas faire des tranches égales, donc on remplace le dernier 3 par 2 ou par 4 (selon le reste dans la division par 3), pour éviter les 1 dans la décomposition, pour que la somme fasse A.

1. Ainsi:

pour 12:12=3+3+3+3, donc le plus grand produit est $3\times3\times3\times3=81$.

pour 11 : 11 = 3 + 3 + 3 + 2, donc le plus grand produit est $3 \times 3 \times 3 \times 2 = 54$.

pour 10 : 10 = 3 + 3 + 4, donc le plus grand produit est $3 \times 3 \times 4 = 36$

car la décomposition 10 = 3 + 3 + 3 + 1 donne un plus petit produit (27).

À noter : remplacer 4 par 2×2 ne change pas le résultat, une autre décomposition possible est : 10=3+3+2+2.

2. Pour $40:40=13\times 3+1$ mais il est préférable de choisir $40=12\times 3+4$, donc le plus grand produit est $3^{12}\times 4=2$ 125 764.

Exercice n°4

Deux cercles pour une enseigne

12 points

Dans le triangle ABC, rectangle en B, on applique le théorème de Pythagore : $AC=\sqrt{3^2+3^2}=\sqrt{18}=3\sqrt{2}\approx 4,2$ cm.

En utilisant le théorème de Thalès avec les parallèles (AB) et (HG) on a :

$$\frac{CA}{CH} = \frac{CB}{CG} = \frac{AB}{HG} \text{ donc } \frac{3\sqrt{2}}{3\sqrt{2}+7} = \frac{3}{CG} = \frac{3}{HG}$$
$$\text{donc } CG = HG = \frac{6+7\sqrt{2}}{2}$$

CDEF est un rectangle car il a 4 angles droits et comme le triangle ABC est rectangle isocèle en B, $\widehat{ACB} = \widehat{DCA} = 45^\circ$ donc le triangle CDE est rectangle isocèle en D donc le rectangle CDEF a 2 côtés consécutifs de même longueur donc c'est un carré.

Ainsi CD = DE = EF = FC =
$$\frac{6+7\sqrt{2}}{2}+4$$
.

Donc $\ell(ABCDEFGHA) = AB + BC + CD + DE + EF + FG + GH + HA$ $\ell(ABCDEFGHA) = 3 + 3 + \left(\frac{6 + 7\sqrt{2}}{2} + 4\right) + \left(\frac{6 + 7\sqrt{2}}{2} + 4\right) + \left(\frac{6 + 7\sqrt{2}}{2} + 4\right) + 4 + \frac{6 + 7\sqrt{2}}{2} + 7$

 $\ell(ABCDEFGHA) = 41 + 14 \sqrt{2}$

Donc la longueur du chemin est environ 60,8 cm.

$$\begin{array}{l} {\rm Aire~(enseigne) = Aire(CDEF) - Aire(CHG) + Aire(ABC)} \\ {\rm Aire~(enseigne) = \left(\frac{6+7\sqrt{2}}{2}+4\right)^2 - \frac{1}{2} \times \left(\frac{6+7\sqrt{2}}{2}+4\right)^2 + \frac{1}{2} \times 3^2} \\ {\rm Aire~(enseigne) \approx} 115.7~{\rm cm^2} \end{array}$$

Exercice n°5

Switch the lights on

4 points

Dans le tableau suivant : une case blanche signifie une ampoule éteinte et une case grise signifie une ampoule allumée.

Au départ	1	2	3	4	5	6	7	8	9
Après avoir pressé A	1	2	3	4	5	6	7	8	9
Après avoir pressé C	1	2	3	4	5	6	7	8	9
Après avoir pressé E	1	2	3	4	5	6	7	8	9
Après avoir pressé B	1	2	3	4	5	6	7	8	9

En appuyant sur A, C, E et B on peut donc bien allumer toutes les lumières. Mais il y a d'autres possibilités, toujours avec A, C, E et B dans n'importe quel ordre. On peut aussi appuyer deux fois sur le même interrupteur, par exemple D, dans une séquence avec A, C, E et B.

Exercice n°6

Jetez-vous à l'eau!

9 points

1. Chemin de Laetitia : $DBCEFA = 100 + 100\sqrt{2} + 100 + 100\sqrt{2} + 100 = 300 + 200\sqrt{2} \approx 583$ Chemin de Philippe : $DCFBEA = 200 \times 2 + 100\sqrt{5} = 400 + 100\sqrt{5} \approx 623$.

Le plus long est celui de Philippe.

Celui de Cécile peut être :

$$DCBFEA = 100 + 100\sqrt{2} + 100\sqrt{5} + 100\sqrt{2} + 100 = 200 + 200\sqrt{2} + 100\sqrt{5} \approx 706$$

2. Voici un exemple de parcours le plus long :

 $DEBHFCKGA = 100 + 100\sqrt{2} + 100\sqrt{5} + 100\sqrt{2} + 100\sqrt{2} + 100\sqrt{5} + 100\sqrt{2} + 100 = 200 + 400\sqrt{2} + 200\sqrt{5} \approx 1213$

Exercice n°7

Le ² magique d' ln

9 points

1. Les sommes de chaque ligne, chaque colonne et chaque diagonale sont égales à 81.

Pour les lignes :

Pour les colonnes :

Pour les

diagonales:

$$22 + 30 + 8 + 21 = 81$$

81

$$30 + 25 + 12 + 14 = 81$$

$$4 + 25 + 20 + 32 = 81$$

$$28 + 12 + 20$$

+21 = 81

$$8 + 20 + 24 + 29 = 81$$

 $21 + 32 + 18 + 10 = 81$

Ce carré magique est bien construit à la manière d'Hélène car

+				
	C + x	B-x-z	A - y + z	D + y
	20 + 2 =	12 - 2 - 6 =	25 - 4 + 6 =	24 + 4 =
	22	4	27	28
	D + z	Α	В	C – z
	24 + 6 =	25	12	20 – 6 =
	30	23	12	20
	B + y - x - z	С	D	A – y + x + z
	12 + 4 - 2 - 6	20	24	25 - 4 + 2 + 6
	= 8	20		= 29
	A - y	D + x + z	C + y - z	B – x
	25 - 4 =	24 + 2 + 6 =	20 + 4 - 6 =	12 – 2 =
88	21	32	18	10

2.

Pour les lignes :

Pour les colonnes :

Pour les diagonales :

Donc c'est bien un carré magique.

3. Voici un exemple de bonne réponse :

 \underline{on} prend x = 2 y = 4 et z = 1.

C + x	B-x-z	A - y + z	D + y 29
D + z	A	B	C – z
B + y - x - z	c	D	A-y+x+z
A – y 9	D + x + z	C + y - z	B – x